Graphs

1- Using graphs to solve inequalities

Inequalities can be solved very easily using graphs, and if you are in any way unsure about the algebra, it would be a good idea to do a graph to check. Let us see how this works .

Example 1:- Suppose we wish to solve $\quad 2 x+3<0$.
This inequality could be solved very easily doing algebra, but it makes a good graphical example.

First we sketch a graph of $\quad \mathrm{y}=2 x+3$ as shown

x	$\mathrm{y}=2 x+3$	(x, y)
0	$\mathrm{y}=0 * 2+3=3$	$(0,3)$
-1	$\mathrm{y}=(-1) * 2+3$	
$=1$	$(-1,1)$	
$\frac{-3}{2}$	$y=\frac{-3}{2} * 2+3=0$	$\left(\frac{-3}{2}, 0\right)$

Example 2:- :- Suppose we wish to solve

A graph of $y=2 x+3$.

$$
3 x-2<4
$$

Soultion:-

x		(x, y)

Exercises 4 :- Using graphs to solve inequalities

a) $2 x+5 \leq 3$
b) $4 x-1>1$
c) $x-3 \leq 2$
d) $5 x+4 \geq 2$
g) $3 x+6>1$

2- Graphing Linear Inequalities in Two Variables

Example 1 :- Graph the solutions to the inequality

$$
y>3 x-2
$$

First, graph the line

$$
y-3 x=-2
$$

x		(x, y)

3- Graphs of Functions

Functions

A function is a relation that uniquely associates members of one set with members of another set. More formally, a function from A to B is an object f such that every a $\in A$ is uniquely associated with an object $f(a)$ in B.

A function is therefore a many-to-one (or sometimes one-to-one) relation. The set A of values at which a function is defined is called its domain, while the set $f(A) \subset$ B of values that the function can produce is called its range. Here, the set B is called the codomain of f .

In the context of univariate, real valued functions $f: A \subset R \rightarrow R$, the fact that domain elements are mapped to unique range elements can be expressed graphically by way of the vertical line test.

Example 1:- We can show this mathematically by writing

$$
f(x)=x+3
$$

1- Types of functions

1-Constant function

Example 2

1) $f(x)=3$,
2) $f(x)=1 / 3$
3) $f(x)=k$,
where $k \in R$

2-Linear function

Example 3:-

1) $\mathbf{f}(\mathbf{x})=\mathbf{a}+\mathbf{b x}$
2) $f(x)=x$
3) $f(x)=2+5 x$

* The graph of linear function is line

3- Power Functions : Power functions are functions that have a leading term greater than one. The most common are $f(x)=x^{2}$ and $f(x)=x^{3}+3 x+4$.

* The graph of Power Functions is curve

4- Rational function

Example 4 :-
$1-\mathrm{f}(\mathrm{x})=\frac{3 x-4}{x}$
$2-\mathrm{f}(\mathrm{x})=\frac{1}{x}$

5-Root Functions: Root functions are function that involve roots, square or otherwise. The most common is, $\mathrm{f}(\mathrm{x})=\sqrt{x}$

2 - Domain and Range

Definition :-The domain of a function is the set of values that we are allowed to plug into our function. This set is the x values in a function such as $f(x)$.as D_{f}
Definition :- The range of a function is the set of values that the function assumes. This set is the values that the function shoots out after we plug an x value in. They are the y values. as R_{f}.

Example :- find Domain and Range for functions

1. $f(x)=5$

Solutions

$$
\begin{gathered}
D_{f}=\{x:-\infty<x<\infty\} \text { or } D_{f}=(-\infty, \infty), \text { and } \\
R_{f}=\{y: y=5\} \text { or } R_{f}=\{5\}
\end{gathered}
$$

2. $f(x)=x+5$

Solutions

$$
D_{f}=\{x:-\infty<x<\infty\} \text { or } D_{f}=(-\infty, \infty),
$$

And

$$
\begin{gathered}
\mathbf{y}=\mathbf{x}+\mathbf{5} \Rightarrow \mathbf{x}=\mathbf{y}-\mathbf{5} \\
\Rightarrow \mathrm{R}_{\mathrm{f}}=\{\mathrm{y}:-\infty<\mathrm{y}<\infty\} \text { or } \mathrm{R}_{\mathrm{f}}=(-\infty, \infty),
\end{gathered}
$$

3. $f(x)=-x^{2}+4$

Solutions

$$
\begin{gathered}
\mathrm{D}_{\mathrm{f}}=\{\mathrm{x}:-\infty<\mathrm{x}<\infty\} \text { or } \mathrm{D}_{\mathrm{f}}=(-\infty, \infty), \\
\text { and } y=-x^{2}+4 \rightarrow x^{2}=4-y \rightarrow x=\sqrt{4-y} \\
\rightarrow 4-y \geq 0 \rightarrow 4 \geq y \text { or } y \leq 4
\end{gathered}
$$

$$
\mathrm{R}_{\mathrm{f}}=\{\mathrm{y}:-\infty<y \leq 4\} \text { or } \mathrm{R}_{\mathrm{f}}=(-\infty, 4]
$$

4. $y=\frac{2}{x^{2}-1}$

Solutions

$$
x^{2}-1=0 \rightarrow x=\mp 1 \rightarrow D_{f}=\frac{R}{\{-1,1\}}
$$

And

$$
\begin{gathered}
y=\frac{2}{x^{2}-1} \rightarrow x^{2} y-y=2 \\
x^{2} y=2+y \rightarrow x^{2}=\frac{2+y}{y} \\
x= \pm \frac{\sqrt{2+y}}{\sqrt{y}} \\
2+y \geq 0 \text { and } y>0 \rightarrow y \geq-2 \text { and } y>0 \\
R_{f}=[-2, \infty) \cap(0, \infty)
\end{gathered}
$$

5. $f(x)=\sqrt{x+2}$

Solutions

$$
\begin{gathered}
x+2 \geq 0 \rightarrow x \geq-2, \quad D_{f}=[-2, \infty) \\
y=\sqrt{x+2} \rightarrow y^{2}=x+2 \rightarrow x=y^{2}-2 \\
R_{f}=R \text { or } R_{f}=(-\infty, \infty)
\end{gathered}
$$

6. $f(x)=\sqrt{9-x^{2}}$

Solutions

$$
9-x^{2} \geq 0 \rightarrow 9 \geq x^{2} \rightarrow x^{2} \leq 9
$$

* $x^{2} \leq a^{2} \rightarrow \quad|x| \leq a \rightarrow-a \leq x \leq a$

$$
\begin{gathered}
x^{2} \leq 9 \rightarrow|x| \leq 3 \rightarrow-3 \leq x \leq 3 \quad D_{f}=[-3,3] \\
y=\sqrt{9-x^{2}} \rightarrow y^{2}=9-x^{2} \rightarrow x^{2}=9-y^{2}
\end{gathered}
$$

$$
\begin{gathered}
x=\sqrt{9-y^{2}} \rightarrow \quad 9-y^{2} \geq 0 \rightarrow y^{2} \leq 9 \\
\rightarrow-3 \leq y \leq 3 \text { but } y \text { is root fcuntion so } y \geq 0 \\
\text { then } 0 \leq y \leq 3 \\
R_{f}=[0,3] \text { or } R_{f}=(-\infty, \infty)
\end{gathered}
$$

Exercises 5 :- find Domain and Range for functions
1- $f(x)=\sqrt{x-4}$
2- $f(x)=\frac{1}{x-3}$
3- $f(x)=\frac{x-1}{(x+3)(x-3)}$
4- $f(x)=x+4$

4- Graphs of Functions (Graphs of Curves)

To graph the curve of a function, we can following steps:-
1-Find the domain and range of the function
2- Check the symmetry of the function
3- Find (if any found) points of intersection with x-axis and y-axis.
4-Choose some another on the curve
5-Draw smooth line through the above points

Graphical Test for Symmetry

1-X-Axis Symmetry: If the point (x, y) the is on the graph, the point $(x,-y)$ is also point

2-Y-Axis Symmetry: If the point (x, y) the is on the graph, the point $(-x, y)$ is also point

3- Origin Symmetry: If the point (x, y) the is on the graph, the $(-x,-y)$ is also on the graph.

X-Axis Symmetry:

If the point (x, y) is on the graph, the point $(x,-y)$ is also on the graph.

Y-Axis Symmetry:
If the point (x, y) is on the graph, the point $(-x, y)$ is also on the graph.

Origin Symmetry:

If the point (x, y) is on the graph, the point $(-x,-y)$ is also on the graph.

If you spin the picture upside

 down about the Origin, the graph looks the same!

Equation Symmetry - Practice Problems

A. Graphically determine what type(s) of symmetry, if any, are present.
1.

2.

3.

5.

6.

B. Algebraically check for symmetry with respect to the x-axis, y-axis, and the origin.

1. $y=x^{2}+4$
2. $y=-x^{3}-x$
3. $y=2 x-10$
4. $x=-y^{2}+4$
5. $x^{2}+y^{2}=25$
6. $y=|x|+2$

Example :- Find Domain and Range for functions and Graph the functions

$$
y=f(x)=x^{2}-1
$$

Solution: -

1) Find D_{f}, R_{f} of the function $D_{f}=(-\infty, \infty)$

To find R_{f} : we must convert the function from $y=f(x)$

$$
\begin{gathered}
y=x^{2}-1 \quad \rightarrow x^{2}=y+1 \rightarrow x= \pm \sqrt{y+1} \\
\rightarrow \text { so } y+1 \geq 0 \quad \rightarrow y \geq-1 \quad R_{f}=[-1, \infty)
\end{gathered}
$$

2) Find x and y intercept
a) x-intercept put $y=0 \rightarrow x^{2}-1=0 \quad \rightarrow x= \pm 1 \quad \rightarrow(-1,0),(1,0)$
a) y-intercept put $x=0 \rightarrow y=0-1 \quad \rightarrow y=-1 \rightarrow(0,-1)$

3) check the symmetry:
4) choose some another point on the curve

x	y
2	3
3	8

Example:- Find Domain and Range for functions and Graph the functions

1) $f(x)=5$

Solutions

1)

$$
D_{f}=\{x:-\infty<x<\infty\} \text { or } D_{f}=(-\infty, \infty)
$$

$$
\mathrm{R}_{\mathrm{f}}=\{5\}
$$

2) Find x and y intercept
a) x-intercept put $y \neq 0 \rightarrow$ there is no point.
b) y-intercept put $x=0 \rightarrow y=5 \rightarrow(0,5)$

3) check the symmetry:
4) choose some another point on the curve

x	y	(x, y)
-2	5	$(-2,5)$
-1	5	$(-1,5)$
0	5	$(0,5)$
1	5	$(1,5)$
2	5	$(2,5)$

2) $f(x)=x+5$

Solutions

1)

$$
\begin{aligned}
& D_{f}=\{x:-\infty<x<\infty\} \text { or } D_{f}=(-\infty, \infty) \\
& R_{f}=\{y:-\infty<y<\infty\} \text { or } R_{f}=(-\infty, \infty)
\end{aligned}
$$

2) Find x and y intercept
a) x-intercept put $y=0 \rightarrow x=-5 \quad(-5,0)$.
b) y-intercept put $x=0 \rightarrow y=5 \rightarrow(0,5)$

3) check the symmetry:
4) choose some another point on the curve

x	y	(x, y)
-2	3	$(-2,3)$
-1	4	$(-1,4)$
0	5	$(0,5)$
1	6	$(1,6)$
2	7	$(2,7)$

3) $f(x)=x$

Solutions

1)

$$
\begin{aligned}
& D_{f}=\{x:-\infty<x<\infty\} \text { or } D_{f}=(-\infty, \infty) \\
& R_{f}=\{y:-\infty<y<\infty\} \text { or } R_{f}=(-\infty, \infty)
\end{aligned}
$$

2) Find x and y intercept
a) x-intercept put $y=0 \rightarrow x=0(0,0)$.
b) y-intercept put $x=0 \rightarrow y=5 \rightarrow(0,0)$
3) check the symmetry:
4) choose some another point on the curve

$$
\begin{aligned}
& f(-2)=-2 \\
& f(-1)=-1 \\
& f(0)=0 \\
& f(1)=1 \\
& f(2)=2
\end{aligned}
$$

4) $f(x)=x^{2}$

Solutions

1)

$$
\begin{aligned}
& D_{f}=\{x:-\infty<x<\infty\} \text { or } D_{f}=(-\infty, \infty), \\
& R_{f}=\{y: 0 \leq y<\infty\} \text { or } R_{f}=[0 \infty),
\end{aligned}
$$

2) Find x and y intercept
a) x-intercept put $y=0 \rightarrow x=0(0,0)$.
b) y-intercept put $x=0 \rightarrow y=0 \rightarrow(0,0)$
$3)$ check the symmetry:
3) choose some another point on the curve

$$
\begin{aligned}
& f(-2)=(-2)^{2}=4 \\
& f(-1)=(-1)^{2}=1 \\
& f(0)=(0)^{2}=0 \\
& f(1)=(1)^{2}=1 \\
& f(2)=(2)^{2}=4
\end{aligned}
$$

5) $f(x)=x^{3}$

Solutions

1)

$$
D_{f}=\{x:-\infty<x<\infty\} \text { or } D_{f}=(-\infty, \infty),
$$

$$
y=x^{3} \quad \rightarrow \quad x=\sqrt[3]{y}
$$

$$
\mathrm{R}_{\mathrm{f}}=\{\mathrm{y}:-\infty<y<\infty\}
$$

2) Find x and y intercept
a) x-intercept put $y=0 \rightarrow x=0 \rightarrow(0,0)$.
b) y-intercept put $x=0 \rightarrow y=0 \rightarrow(0,0)$

3) check the symmetry:
4) choose some another point on the curve
$f(-2)=(-2)^{3}=-8$
$f(-1)=(-1)^{3}=-1$
$f(0)=(0)^{3}=0$
$f(1)=(1)^{3}=1$
$f(2)=(2)^{3}=8$

6) $f(x)=\sqrt{x}$

Solutions

1)

$$
\begin{aligned}
\mathrm{D}_{\mathrm{f}} & =\{\mathrm{x}: 0 \leq x<\infty\} \text { or } \mathrm{D}_{\mathrm{f}}=[0, \infty), \\
y & =\sqrt{x} \rightarrow y^{2}=x \rightarrow x=y^{2} \\
\mathrm{R}_{\mathrm{f}} & =\{\mathrm{y}: 0 \leq y<\infty\} \text { or } \mathrm{R}_{\mathrm{f}}=[0, \infty),
\end{aligned}
$$

$$
\begin{aligned}
& f(-2)=\sqrt{-2}= \\
& f(-1)=\sqrt{-1}= \\
& f(0)=\sqrt{0}=0 \\
& f(1)=\sqrt{1}=1 \\
& f(4)=\sqrt{4}=2
\end{aligned}
$$

7) $f(x)=|x|$
$\underline{\text { Solutions }}$

$$
\begin{aligned}
\mathrm{D}_{\mathrm{f}} & =\{\mathrm{x} \infty \leq x<\infty\} \quad \text { or } \mathrm{D}_{\mathrm{f}}=(-\infty, \infty), \\
\mathrm{R}_{\mathrm{f}} & =\{\mathrm{y}: 0 \leq y<\infty\} \text { or } \mathrm{R}_{\mathrm{f}}=[0, \infty),
\end{aligned}
$$

$$
f(-2)=|-2|=2
$$

$$
f(-1)=|-1|=1
$$

$$
f(0)=|0|=0
$$

$$
f(1)=|1|=1
$$

$$
f(2)=|2|=2
$$

8) $f(x)=\frac{1}{x}$

Solutions

$$
\begin{aligned}
& f(-2)=\frac{1}{-2}=-\frac{1}{2} \\
& f(-1)=\frac{1}{-1}=-1 \\
& f(0)=\text { unde fined } \\
& f(1)=\frac{1}{1}=1 \\
& f(2)=\frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

$$
\mathrm{D}_{\mathrm{f}}=\mathrm{R} /\{0\} \text { and } \mathrm{R}_{\mathrm{f}}=\mathrm{R} /\{0\}
$$

Exercises 6 :-Find Domain and Range for functions and Graph the functions
1- $f(x)=\sqrt{x-4}$
2- $f(x)=\frac{1}{x-3}$
3- $f(x)=\frac{x-1}{x+3}$
4- $f(x)=x+4$
5- $f(x)=x^{2}+4 x-3$

