Graphs

1- Using graphs to solve inequalities

Inequalities can be solved very easily using graphs, and if you are in any way unsure about the algebra, it would be a good idea to do a graph to check. Let us see how this works.

Example 1:- Suppose we wish to solve

This inequality could be solved very easily doing algebra, but it makes a good graphical example.

First we sketch a graph of

y = 2x + 3 as	shown
---------------	-------

x	y = 2x + 3	(x,y)
0	y = 0 * 2 + 3 = 3	(0,3)
-1	y = (-1) * 2 + 3 = 1	(-1,1)
$\frac{-3}{2}$	$y = \frac{-3}{2} * 2 + 3 = 0$	$(\frac{-3}{2},0)$

 \dot{x} -3

A graph of y = 2x + 3.

Example 2:- :- Suppose we wish to solve Soultion:-

(x, y)x

Exercises 4 :- Using graphs to solve inequalities

b) 4x-1 > 1 c) $x-3 \le 2$ d) $5x+4 \ge 2$ g) 3x+6 > 1a) $2x+5 \le 3$

<u>first .stq.math</u>

$$3x-2<4.$$

$$2x + 3 < 0$$
.

Example 1 :- Graph the solutions to the inequality

First, graph the line y - 3x = -2

3- Graphs of Functions

Functions

A function is a relation that uniquely associates members of one set with members of another set. More formally, a function from A to B is an object f such that every a \in A is uniquely associated with an object f(a) in B.

A function is therefore a many-to-one (or sometimes one-to-one) relation. The set A of values at which a function is defined is called its domain, while the set $f(A) \subset B$ of values that the function can produce is called its range. Here, the set B is called the codomain of f.

In the context of univariate, real valued functions $f : A \subset R \rightarrow R$, the fact that domain elements are mapped to unique range elements can be expressed graphically by way of the vertical line test.

Example 1:- We can show this mathematically by writing

$$\mathbf{f}(\mathbf{x}) = \mathbf{x} + \mathbf{3}$$

1- Types of functions

1-Constant function

Example 2

1) f(x) = 3, 2) f(x) = 1/3 3) f(x) = k, where $k \in \mathbb{R}$

first .stq.math

$$y > 3x - 2$$
.

2-Linear function

Example 3:-

1) f(x) = a + bx 2) f(x) = x 3) f(x) = 2 + 5x

* The graph of linear function is <u>line</u>

3- Power Functions : Power functions are functions that have a leading term greater than one. The most common are $f(x) = x^2$ and $f(x) = x^3+3x+4$.

* The graph of Power Functions is <u>curve</u>

Locturor : Fatima hamood

5 - Root Functions : Root functions are function that involve roots, square or otherwise. The most common is , $f(x) = \sqrt{x}$

2 - Domain and Range

Definition :-The domain of a function is the set of values that we are allowed to plug into our function. This set is the x values in a function such as f(x).as D_f

Definition :- The range of a function is the set of values that the function assumes. This set is the values that the function shoots out after we plug an x value in. They are the y values. as R_f .

Example :- find Domain and Range for functions

1. f(x) = 5

<u>Solutions</u>

$$D_f = \{x : -\infty < x < \infty\}$$
 or $D_f = (-\infty, \infty)$, and
 $R_f = \{y : y = 5\}$ or $R_f = \{5\}$

2. f(x) = x + 5

<u>Solutions</u>

$$D_f = \{x : -\infty < x < \infty\}$$
 or $D_f = (-\infty, \infty)$,

And

$$\Rightarrow R_{f} = \{y : -\infty < y < \infty\} \text{ or } R_{f} = (-\infty, \infty).$$

 $\mathbf{v} = \mathbf{x} + \mathbf{5} \Rightarrow \mathbf{x} = \mathbf{v} - \mathbf{5}$

3. $f(x) = -x^2 + 4$

Solutions

$$D_{f} = \{x : -\infty < x < \infty\} \text{ or } D_{f} = (-\infty, \infty),$$

and $y = -x^{2} + 4 \rightarrow x^{2} = 4 - y \rightarrow x = \sqrt{4 - y}$
 $\rightarrow 4 - y \ge 0 \rightarrow 4 \ge y \ 0r \ y \le 4$

first .stq.math

<u> Lecturer : Fatima hameed</u>

first .stg.math

$$R_f = \{y : -\infty < y \le 4 \} \text{ or } R_f = (-\infty, 4],$$

4.
$$y = \frac{2}{x^2 - 1}$$

Solutions

And

$$x^{2} - 1 = 0 \rightarrow x = \mp 1 \rightarrow D_{f} = \frac{R}{\{-1,1\}}$$

$$y = \frac{2}{x^{2}-1} \rightarrow x^{2}y - y = 2$$

$$x^{2}y = 2 + y \rightarrow x^{2} = \frac{2+y}{y}$$

$$x = \pm \frac{\sqrt{2+y}}{\sqrt{y}}$$

$$2 + y \ge 0 \text{ and } y > 0 \rightarrow y \ge -2 \text{ and } y > 0$$

$$R_{f} = [-2, \infty) \cap (0, \infty)$$

 $5. f(x) = \sqrt{x+2}$

Solutions

$$\begin{aligned} x+2 &\ge 0 \ \rightarrow \ x \geq -2 \ , \qquad D_f = [-2,\infty) \\ y &= \sqrt{x+2} \ \rightarrow y^2 = x+2 \ \rightarrow x = y^2 - 2 \\ R_f &= R \ or \ R_f = (-\infty,\infty) \end{aligned}$$

 $6. f(x) = \sqrt{9 - x^2}$

Solutions

$$9 - x^2 \ge 0 \rightarrow 9 \ge x^2 \rightarrow x^2 \le 9 ,$$

$$* x^2 \le a^2 \rightarrow |x| \le a \rightarrow -a \le x \le a$$

$$x^2 \le 9 \to |x| \le 3 \to -3 \le x \le 3$$
 $D_f = [-3,3]$

$$y = \sqrt{9 - x^2} \rightarrow y^2 = 9 - x^2 \rightarrow x^2 = 9 - y^2$$

<u>first .stg.math</u>

 $x = \sqrt{9 - y^2} \rightarrow 9 - y^2 \ge 0 \rightarrow y^2 \le 9$ $\rightarrow -3 \le y \le 3 \text{ but } y \text{ is root f cuntion so } y \ge 0$ $then \quad 0 \le y \le 3$ $R_f = [0, 3] \text{ or } R_f = (-\infty, \infty)$

Exercises 5 :- find Domain and Range for functions

 $1-f(x) = \sqrt{x-4}$ $2-f(x) = \frac{1}{x-3}$ $3-f(x) = \frac{x-1}{(x+3)(x-3)}$ 4-f(x) = x+4

4- Graphs of Functions (Graphs of Curves)

To graph the curve of a function, we can following steps:-

- 1- Find the domain and range of the function
- 2- Check the symmetry of the function
- 3- Find (if any found) points of intersection with x-axis and y-axis.
- 4-Choose some another on the curve
- 5-Draw smooth line through the above points

Graphical Test for Symmetry

1-X-Axis Symmetry: If the point (x, y) the is on the graph, the point (x, -y) is also point

2-Y-Axis Symmetry: If the point (x, y) the is on the graph, the point (-x, y) is also point

3- Origin Symmetry: If the point (x, y) the is on the graph, the (-x, -y) is also on the graph.

Even Functions have <u>Y-Axis</u> Symmetry!

Odd Functions have <u>Origin</u> Symmetry!

X-Axis Symmetry:

If the point (x, y)is on the graph, the point (x, -y) is also on the graph.

Y-Axis Symmetry:

If the point (x, y)is on the graph, the point (-x, y) is also on the graph.

Origin Symmetry:

If the point (x, y)is on the graph, the point (-x, -y) is also on the graph.

If you spin the picture upside down about the Origin, the graph looks the same!

first .stq.math

A. Graphically determine what type(s) of symmetry, if any, are present.

Equation Symmetry - Practice Problems

B. Algebraically check for symmetry with respect to the x-axis, y-axis, and the origin.

1. $y = x^2 + 4$ 2. $y = -x^3 - x$ 3. y = 2x - 104. $x = -y^2 + 4$ 5. $x^2 + y^2 = 25$ 6. y = |x| + 2

Example :- Find Domain and Range for functions and Graph the functions

$$y = f(x) = x^2 - 1$$

Solution: -

1) Find D_f , R_f of the function $D_f = (-\infty, \infty)$

To find R_f : we must convert the function from y = f(x)

$$y = x^{2} - 1 \quad \rightarrow \ x^{2} = y + 1 \quad \rightarrow x = \pm \sqrt{y + 1}$$

$$\rightarrow so \ y + 1 \ge 0 \quad \rightarrow \ y \ge -1 \qquad R_{f} = [-1, \infty)$$

2) Find x and y intercept

a) x-intercept put
$$y = 0 \rightarrow x^2 - 1 = 0 \rightarrow x = \pm 1 \rightarrow (-1,0), (1,0)$$

4) choose some another point on the curve

Example:- Find Domain and Range for functions and Graph the functions

1) f(x) = 5

<u>Solutions</u>

1)

 $D_f = \{x : -\infty < x < \infty\}$ or $D_f = (-\infty, \infty)$, $R_f = \{5\}$

2) Find x and y intercept

a) $x - intercept put \quad y \neq 0 \rightarrow there is no point$.

b) $y - intercept \, put \, x = 0 \rightarrow y = 5 \rightarrow (0,5)$

3) check the symmetry:

4) choose some another point on the curve

<u> Locturor : Fatima hamoed</u>

2) f(x) = x + 5

<u>first .stg.math</u>

21

Solutions

1)

$$\begin{split} D_f &= \{ x : -\infty < x < \infty \} \text{ or } D_f = (-\infty, \infty), \\ R_f &= \{ y : -\infty < y < \infty \} \text{ or } R_f = (-\infty, \infty), \end{split}$$

2) Find x and y intercept

a)
$$x - intercept put \quad y = 0 \rightarrow x = -5 \quad (-5,0)$$
.

- b) $y intercept put \ x = 0 \rightarrow y = 5 \rightarrow (0,5)$
- 3) check the symmetry:

4) choose some another point on the curve

$$3) \quad f(x) = x$$

<u>Solutions</u>

1)

$$\begin{split} D_{\mathrm{f}} &= \{ \mathrm{x} : -\infty < \mathrm{x} < \infty \} \text{ or } D_{\mathrm{f}} = (-\infty, \infty), \\ R_{\mathrm{f}} &= \{ \mathrm{y} : -\infty < \mathrm{y} < \infty \} \text{ or } R_{\mathrm{f}} = (-\infty, \infty), \end{split}$$

2) Find x and y intercept

- a) $x intercept put \quad y = 0 \rightarrow x = 0 \quad (0,0)$.
- b) $y intercept put \quad x = 0 \rightarrow y = 5 \rightarrow (0,0)$

3) check the symmetry:

4) choose some another point on the curve

- b) $y intercept put x = 0 \rightarrow y = 0 \rightarrow (0,0)$
- 3) check the symmetry:

4) choose some another point on the curve

$f(-2) = (-2)^2 = 4$	
$f(-1) = (-1)^2 = 1$	
$f(0) = (0)^2 = 0$	
$f(1) = (1)^2 = 1$	
$f(2) = (2)^2 = 4$	-2-

5) $f(x) = x^3$

Solutions

D_f = {x : -∞ < x < ∞} or D_f = (-∞, ∞), $y = x^3 \rightarrow x = \sqrt[3]{y}$ Locturor : Fatima hameed

 $R_{f} = \{ y : -\infty < y < \infty \}$

2) Find x and y intercept

- a) $x intercept \ put \ y = 0 \rightarrow x = 0 \rightarrow (0,0)$.
- b) $y intercept put \quad x = 0 \rightarrow y = 0 \rightarrow (0,0)$
- 3) check the symmetry:

4) choose some another point on the curve

 $f(-2) = (-2)^{3} = -8$ $f(-1) = (-1)^{3} = -1$ $f(0) = (0)^{3} = 0$ $f(1) = (1)^{3} = 1$ $f(2) = (2)^{3} = 8$

6) $f(x) = \sqrt{x}$

Solutions

1)

$$D_{f} = \{x : 0 \le x < \infty\} \text{ or } D_{f} = [0, \infty),$$
$$y = \sqrt{x} \rightarrow y^{2} = x \rightarrow x = y^{2}$$
$$R_{f} = \{y : 0 \le y < \infty\} \text{ or } R_{f} = [0, \infty),$$

Exercises 6 :- Find Domain and Range for functions and Graph the functions

$$1-f(x) = \sqrt{x-4}$$

$$2-f(x) = \frac{1}{x-3}$$

$$3-f(x) = \frac{x-1}{x+3}$$

$$4-f(x) = x+4$$

$$5-f(x) = x^{2} + 4x - 3$$